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necessary input for the calculation. According to (36) 
and (49), only the phase invariants of the structure- 
factor triplets and quartets affect the calculation. 

Both the reflection intensities and mode excitations 
have peak values at the corresponding critical angles. 
This is due to the term [sin ~o + (sin 2 ~o-sin 2 0i)1/2] -i 
involved in the wavefield amplitudes. 

Small changes in ~oN cause large variations in the 
reflection intensities, as has already been shown in 
Figs. 6, 7 and 8. Experimentally, in order to detect 
this variation, strictly parallel and intense radiation 
sources with wavelength tunability are required. Use 
of synchrotron radiation is indispensable for carrying 
out the GIXD experiments (e.g. Cowan, Brennan, 
Jach, Bedzyk & Materlik, 1986; Sakata & Hashizume, 
1988; Durbin & Gog, 1989). 

In conclusion, we have derived analytical 
expressions for reflection intensity, wavefield ampli- 
tude and accommodation for two-beam and sym- 
metric N-beam ( N > 2 )  GIXD. A new geometric 
scheme has also been provided in this study to reveal 
the excitation of the dispersion surface. Numerical 
calculation is straightforward for symmetric N-beam 
GIXD and should be modified for general asymmetric 
cases for which the obtaining of analytical 
expressions for intensities and wavefield amplitudes 
is not guaranteed. 
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Abstract 

It is found to be possible to solve the structures of 
fairly simple materials from very poor-quality diffrac- 
tion data by the use of reciprocal-space Patterson 
methods. Data sets assessed include those from a 
high-resolution neutron powder diffractometer, data 
sets with inaccurate randomized I Fhl values, very 
small data sets (as few as ten reflections) and data 
sets with no estimates of I F hi values given. While 
refinement is not always feasible from such data it is 
found possible to obtain atomic positions and con- 
sequent structural information with reasonable 
accuracy. Reasons for using Patterson rather than 
direct methods in such cases are discussed. 

0108-7673/89/120833-07503.00 

Introduction 

It is not always possible to collect good-quality struc- 
ture-factor data from a crystallographic experiment. 
Problems can arise for various experimental reasons, 
owing, for example, to small poor-quality crystals, or 
to the existence of only a powder sample. The resol- 
ution of such experimental difficulties is beyond the 
scope of this work but rather the potential for the 
extraction of as much information as possible about 
the structure under such unfavourable circumstances 
will be discussed. It is in the area of garnering struc- 
tural information from poor-quality data that Patter- 
son methods have a significant advantage over direct 
methods, especially when the data are very scarce. 

O 1989 International Union of Crystallography 



834 CRYSTAL STRUCTURES FROM POOR-QUALITY DATA 

The advantages of Patterson methods over direct 
methods for very poor data 

By the very nature of the phase-determining processes 
undertaken in direct methods of structure determina- 
tion, a fairly considerable subset of reflections is 
required. If this is not available it is very difficult to 
establish a suitable phase pathway even using multi- 
solution methods. The nature of the triplet and other 
relations means that one in general requires a large 
pool of reflections within which to combine indices 
in order to establish the invariant relationships. It 
follows that in order to exploit direct methods a fairly 
comprehensive list of reflections must be measured. 
On the other hand, model-fitting Patterson methods 
require only that the reflections available be in some 
way 'representative' of the diffraction from the 
sample. The number of reflections required for Patter- 
son-method structure determination tends therefore 
to be somewhat smaller than for direct methods. 

In addition direct methods, being fundamentally a 
statistical procedure based to a large extent (through 
probability expressions) on the measured intensities 
(and hence IEh[ values), require a fairly accurate set 
of diffracted intensities. In particular, i fa  weak reflec- 
tion is accidentally given a large I Ehl value (as can 
happen in powder patterns where there are over- 
lapped reflections) then the mistaken incorporation 
of this reflection early in the phase-determining pro- 
cedure can seriously prejudice subsequent phases and 
hence lead to an incorrect map and to a failure to 
solve the structure. With Patterson calculations such 
an error on an individual reflection will not be propa- 
gated through the procedure in the same way and is 
liable merely to lead to inaccuracy rather than in- 
correctness in the final Fourier map. 

There is also the possibility of obtaining very low- 
resolution Patterson maps which contain basically 
the correct structure but not necessarily at atomic 
resolution. This deconvolution of a correct answer 
from a very broadly distributed Patterson function 
is made possible by the provision of model 
stereochemical information. The phase-determina- 
tion formulae of direct methods are not as applicable 
to this type of deconvolution of structural information 
from low-resolution data. The application of struc- 
tural knowledge in direct methods can be used either 
to weight normalization and modify probabilities for 
invariants (Main, 1976) or in interpretation of the 
final E map. Both of these use the structural informa- 
tion in a weaker way than the a priori application of 
this information in the Patterson techniques. 

For an unknown structure, the Patterson function 
does not rely on the missing phase information, and 
in this sense the calculated Patterson map is more 
meaningful in relation to the true solution than an 
equivalent I FI map calculated with no phases. The 
relative strength and robustness of Patterson methods 

in the case of a poor data set arises fundamentally 
from the fact that the Patterson calculations are rooted 
firmly in the measurement and manipulation of 
intensities. Direct methods, on the other hand, rely 
to a far greater extent on the more critical phases 
which may be unavailable, especially for poor data 
sets. This leads to less stability in the calculations. 

Structure determination methods 

The direct-methods calculations to be described were 
carried out using the MITHRIL program (Gilmore, 
1984), while the Patterson-methods calculations used 
PATMET (Wilson & Tollin, 1986). The use of these 
programs for neutron data has been discussed else- 
where (Wilson, 1987). 

The PATMET techniques are described in detail 
elsewhere (Wilson, 1988) but a very brief outline will 
be given here to clarify results presented later. PAT- 
MET normally uses sharpened squared structure fac- 
tors, denoted ]F~l 2. The basic stages of the PATMET 
calculations are: 

(i) I(O,~)function. Ifthere is a planar group present 
in the structure, the I ( 0 , ~ )  function (Tollin & 
Cochran, 1964) locates this, in terms of the two 
spherical polar angles 0 and ~; 

(ii) o-(01,02, 03)function. This rotation function 
(Tollin & Cochran, 1964) finds the best fit of input 
model to the data, performing rotations described by 
the Eulerian angles 01,02, 03. If the o'-function calcu- 
lation follows planar-group orientation determina- 
tion, only a 1D rotation-function calculation is 
required, in the plane found for this group by the 
I(0, ~). This 1D rotation function is denoted o-(0~) 
here; 

(iii) Q functions. These translation functions 
(Tollin, 1966) position an oriented group within the 
cell with respect to each individual symmetry element. 

It is convenient to define an agreement index 
between the coordinates found using PATMET and 
the refined set for the known structure. This param- 
eter, termed the coordinate R factor Re, is defined as 

N 

R c = ( 1 / a s )  ~ {[(X,r--X,p)/X,r] 2 
i = l  

+[(y,_y,p)/y,r]2 + [(z,~ - z,p)/z,~]2p/% 

where the summation is over the N atoms i in the 
model; xi~, xip etc. refer to the refined and PATMET 
coordinates respectively. 

Solution parameters and models used 

The three crystal structures examined here are the 
following: 

(I) 3-deazauracil (Low & Wilson, 1983; Fig. 1). 
CsH5NO2, orthorhombic, P212~21, a=8-638 ,  b--  
5.279, c -- 11.220/~, Z = 4. The expected orientation 
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of the planar group is at (0, ~p) values of (44 °, 53°). 
Three Q functions can be calculated, positioning the 
group with respect to the three screw axes. The model 
used for the structural solution is shown in Fig. 1; 

(II) 2',3',5'-tri-O-acetylguanosine (Wilson, Low & 
Tollin, 1985; Fig. 2). C36H39NsO8, monoclinic, P2~, 
a=7 .414 ,  b=11.491 ,  c = 1 1 - 7 9 0 ~ ,  /3=99.47 ° , 
Z = 2. The planar-group orientation is at (0, ~o)= 
(54 °, 180°). A Q function defines the position of the 
group with respect to the 23 axis, the other trans- 
lational position being undefined in this space group. 
The model used is shown in Fig. 2. This structure was 
chosen for these analyses since the planar model 
group is a minor part of the overall structure; 

(I I I) 3,4-dihydroxycyclobut-3-ene- 1,2-dione, squa- 
ric acid (Semmingsen, Hollander & Koetzle, 1977; 
Fig. 3). C4H204, monoclinic, P23/m, a = 6 . 1 4 3 ,  
b=5 .286 ,  c = 6 . 1 4 8 ~ ,  /3=86.96 ° , Z = 2 .  The 
molecule lies exactly in the y =  1/4 plane, (0, ~o)= 
(90 ° , 90°). The model is positioned within the cell by 
the 2D Q(Xo, Zo) function with respect to the 2~ axis 
and by the 1D Q(Yo) function with respect to the 
mirror plane. 

0 4  

6 

Fig. 1. The planar molecule of 3-deazauracil (excluding H atoms). 
The model used in the PATMET solution consists of all of these 
atoms. 

' ~  05'I 
02' ~ c2' 14 { ) t I 

'rZ-=~--"--~) o 5 

Fig. 2. The molecule of 2',3',5'-tri-O-acetylguanosine (excluding 
H atoms). The model atoms used are shaded. 

Structural solution examples 

( a) High-resolution neutron powder data 

The so-called ab initio determination of crystal 
structures from very high-resolution powder data has 
been a focus of much recent interest (David, Johnson 
& Wilson, 1988; and references therein), using both 
X-ray synchrotron and neutron data. The data sets 
to be assessed were collected on the High-Resolution 
Powder Diffractometer, HRPD (Johnson & David, 
1985), at the ISIS Spallation Neutron Source. 

(i) 3,4-Dihydroxycyclobut-3-ene- 1,2-dione: squaric 
acid. Data were collected from a very high-quality 
sample of squaric acid (Nelmes, Tun, David & 
Harrison, 1987) in the high-resolution ( A d / d - 5  x 
10 -4 ) instrument configuration. This material was 
being studied by high-resolution powder diffraction 
primarily to examine the small monoclinic distortion 
from tetragonal symmetry. 

From the profile refinement of the data, a total of 
193 IFnl values was extracted. To simulate a true ab 
initio test, overlapping re3ections were averaged at a 
Ad/d  resolution of 5 x 10 -4. Attempts to solve the 
structure using direct methods in MITHRIL 
(Gilmore, 1984) failed - probably b~ecause of the 
extreme planarity of the molecule (all atoms sit on 
y - - 1 / 4 ) .  Traditionally, direct methods have always 
been at their weakest in such cases, i.e. where a planar 
moiety is a dominant fraction of the scattering power 
of the cell. In this case the planar group is the whole 
molecule and hence direct methods can be in con- 
siderable difficulty. This is demonstrated by the fact 
that Katie (1968) recycling using the whole published 
molecule as model fails to produce adequate phasing. 
Problems like this with planar groups suggest recourse 
to Patterson methods, which should be ideal for this 
problem. 

In the Patterson-methods calculations, the top hun- 
dred sharpened [F~[ 2 values were used. The structure 
was solved using the I(0, ~p), 0-(03) and Q(Xo, Zo) 
and Q(Yo) functions. The I(0, ~) peak occurs at 
(90 °, 90°). Using a C4 square as model, we found the 
rotation-function peak at 03 = 160 °, the Q(Xo, Zo) 
peak at (0.18, 0.4) and the Q(Yo) peak at (0.25). The 
resulting solution coordinates for the four atoms in 
the model gave an Rc of 0-025. 

k I 
C 

.oS \o 
Fig. 3. A schematic representation of the structure of the planar 

squaric acid molecule. In this case the model used consists of 
the four C atoms. The Patterson-method results from using the 
C404 fragment as model are similar. 
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These coordinates were used in MITHRIL  for 
Fourier recycling, which revealed the four O atoms 
as the next four peaks in the resulting map, and the 
structure is thus solved. Similar results were found 
using the C404 group as model and the structure was 
also solved using a C6 ring as model, together with 
Fourier recycling. This latter example of Patterson 
methods orienting and positioning a six-membered 
ring with sufficient accuracy to give phases to solve 
a four-membered ring structure by Fourier methods 
is quite novel and an indication that the model sup- 
plied does not have to be very precise. 

The procedure of Fourier recycling the final orien- 
ted and positioned model from Patterson methods to 
verify structural solution has been used throughout 
this work. 

(ii) 3-Deazauracil. The data from this somewhat 
poorer-quality sample were collected in the lower- 
resolution configuration of HRPD ( A d / d  - 5 x 10 -3) 
(Wadsworth, Wilson & David, 1989), and consisted 
of 339 reflections. The intensities were extracted from 
the final profile fit and hence reflect the model used 
in the refinement. In order to reintroduce the resol- 
ution function and simulate genuine I F  hi extraction, 
reflections were averaged at the 5 x 10 3 resolution 
level. From this process, some 30 doublets and seven 
triplets were found to be unresolved, meaning that 
81 of the 339 intensities were modified. The best 
method for the extraction of intensities from powder 
patterns of unknown structures will not be discussed 
here, since no truly unknown structures are being 
examined. This matter is considered elsewhere (David 
& Wilson, in preparation; Wilson & Wadsworth, in 
preparation). 

The 300 largest I F~[ 2 were used in the structural 
solution. The structure was found to solve with ease 
by both Patterson and direct methods. The results of 
PATMET were as follows: I(0, ~o) peak at (44 °, 
53.2°), o'(0~) peak at 122 °, Q(Xo, Yo, Zo) solution at 
(0.187, 0.324, 0.212). These parameters led to a set 
of coordinates which solve the structure, with an Rc 
of 0.048. 

( b ) Inaccurate single-crystal data 

If for some reason one has only been able to collect 
a limited or inaccurate single-crystal data set it is still 
possible to obtain reasonable structural information 
from Patterson methods. The ability of P A T M E T  to 
solve structures from very few reflections is discussed 
below. To investigate the insensitivity of the program 
to errors in the experimental structure factors, a series 
of calculations were performed using 'randomized' 
data, i.e. data where the structure factors have been 
altered in some random fashion. The summary below 
gives the results for a series of randomized data set 
calculations. The degree of randomness is measured 

by the residual R R defined as 

RR = ( 1 / N )  ~ IIF~I-IFhlI/IFhl, 
h 

where there are N reflections in the data set, IF hi is 
the observed structure factor, and ]F R] the random- 
ized structure factor of reflection h. For the 
unmodified observed data, I F~I = I F~I, and R R = 0. In 
general, the program appears to be robust to fluctu- 
ations of up to -100% in the structure factors used, 
represented by R R -- 1. Randomized data-set calcula- 
tions were carried out on the test structures (I) and 
(If). 

(i) 3-Deazauracil. A series of calculations was per- 
formed on this structure using data sets with various 
degrees of randomization. The randomization was 
based on fluctuations at some chosen level, using a 
random number generator to choose the sign of the 
fluctuation and modify its magnitude. The results 
of the calculations were as follows (summarized in 
Table 1 ). 

For 20% (RR--0"2) randomization the results 
obtained from PATMET were essentially unchanged 
from those with the correct data set. At 50% ( R R -  
0"5), the peak in the I(0, 9) function has shifted by 
some 6 ° , but the rotation function finds the correct 
orientation as before. The correct shift is only indi- 
cated as the second-highest peak in the Q(Yo, Zo) 
function but the combined map (Wilson & Tollin, 
1988) gives the correct (Xo, Yo, Zo) shift as the highest 
ranked solution. The structure is thus solved easily 
with these data. When 100% (RR -- 1) randomization 
is imposed, the degree of inaccuracy of the data" is 
such that there are some problems in obtaining the 
solution. The rotation function finds an orientation 
of 0~ = 178 °, implying a rotation of the six-membered 
ring by 60 ° . The importance of using only the most 
basic molecular framework when very poor data are 
being used is stressed by this orientational ambiguity. 
Under such circumstances, incorrectly oriented side 
groups can cause problems in later calculations. For 
this reason, only a six-membered ring was used for 
the 100% (and 200%) randomized calculations, 
excluding the exocyclic atoms from the model. Using 
this model in the present case, the correct shifts were 
indicated as the second-ranked solution in the com- 
bined Q map, which is an indication that the solution 
is beginning to be less well indicated. By the stage of 
200% (RR--2)  randomization, the program is in 
serious difficulty in attempting to solve the structure. 
The I(O, q~) peak has shifted further to some 10 ° from 
the correct value and while the rotation function gives 
a peak at 0~ = 120 °, indicating that the orientation can 
still be approximately obtained, the Q functions fail 
to locate the fragment in the cell. The correct shifts 
are not listed among the combined Q-map solutions 
and the conclusion has to be that at this stage PAT- 
M E T  has failed to solve the structure. The ]FR[ data 
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by this stage, however, bear very little resemblance 
to the original I Ful values, so perhaps this is not too 
surprising. 

(ii) 2',3',5'-Tri-O-acetylguanosine. For 50% ran- 
domization the solution is obtained easily (see Table 
1), as it is for 100% randomization. For 200% ran- 
domization, the solution is obtained, but with some 
difficulty, using the second peak in the rotation func- 
tion and the fifth in the Q map. The interpretation 
of the latter map can be improved by using correlation 
of maps calculated using different data sections 
(Wilson & Tollin, 1988). 

The results from these data sets suggest that 
Patterson methods are rather robust to inaccuracies, 
in the form of random errors, in the reflection data 
obtained from the experiment. It is of interest to test 
the behaviour of direct methods with the same ran- 
domized data. The results from these calculations can 
be briefly summarized as follows: 

(i) 3-Deazauracil. RR =0.47: Solution found by 
default calculations in MITHRIL.  RR = 0 " 8 3 :  N o  s o l -  

u t i o n  obtained using quartets and examining top six 
E maps, or by other, more exhaustive, attempts. 

(ii) 2',3',5'-Tri-O-acetylguanosine. Correct data 
(RR = 0 ) :  Solution in default calculations. RR = 0.46: 
No solution obtained using quartets and examining 
six E maps. Once again more exhaustive solution 
attempts failed. 

As a check on the ability of the randomized data 
to produce the solution under ideal circumstances, 
the published model for 2',3',5'-tri-O-acetylguanosine 
was used in the direct-methods calculations in a Karle 
recycling scheme (Karle, 1968), along with the RR = 
0.46 data. In this case the solution was obtained. 
Attempts to use this model as a known (oriented and 
positioned) group (Main, 1976) in a standard direct- 
methods phasing run did not lead to a solution. 

( c) Structural solution using very small data sets 

(i) 3-Deazauracil. The results from calculations 
using many fewer reflections to solve this structure 
are also very encouraging (Table 2). The solution 
using 30 I F~[ 2 values was perfectly routine. The 
I(0, ~) peak has shifted slightly by some 3 ° but this 
is not significant for structural solution. For a data 
set consisting of just the top 15 reflections, the I(0, ~o) 
peak shifts again, by some 6 ° from the correct orienta- 
tion. In this case there is some degradation in the 
Q-function results, with the correct solution not being 
the highest peak in every map. However, the com- 
bined map ranks the correct shifts as the highest 
solution. Once one has reduced the data set used to 
a mere ten reflections (the original single-crystal data 
set consists of 606), a few more problems arise. In 
this case the I(0, ~o) is as for 15 reflections but the 
rotation function gives a peak at 01 = 0 ° as opposed 
to 01 = 122 ° in the earlier runs. This means the 

Table 1. Summary of randomized data solution 
attempts 

3-Deazaurac i l  (300 reflections) - PATMET 

/(0, q,) ~(0,) 
Rn (o) (o) Q(X0,  Yo, Z0) Rc  

0-19 44, 53 122 0-177, 0.324, 0.217 0-034 
0"47 42, 47 120 0" 171, 0"324, 0"217 0"029 
0"95 42, 47 178" 0" 185, 0"331,0"206 (2nd) 0.020 
1.90 47, 42 112" No solution 

2 ' ,3 ' ,5 ' -Tr i -O-acetylguanosine (300 reflections) - PATMET 

I(0,~) ~(o~) 
Rn (o) (o) Q(X0 ' Zo ) Rc 

0"46 54,180 10 0"327,0"330 0.079 
0-92 54,180 10 0-327,0"331 0-078 
1"85  54,180 10(2nd) 0.342,0.343(16th) 0.058 

* No solution for eight-atom model, exocyclic atoms excluded. 

Table 2. Very small data set solutions in PA TMET 

3-Deazauraci l  
I (0 ,  ~)  or(01) 

Nrefs (o) (o) 

30 46, 55 122 
15 50, 54 122 
10 50, 54 0* 

2',3',5'-Tri- O-ace ty lguanos ine  

Q(Xo,  Yo, Zo) Rc 
0.185,0.318,0.224 0.036 
0.184,0.318,0.223 0-095 
0.320,0.460,0.360(2nd) 0.018 

I (0 ,  ~p) o'(Ol) 
Nref s (o) (o) Q(Xo ' Zo ) Rc 
300 54, 180 14 0-342, 0"341 0.067 

50 54, 180 12 0.343, 0-341 (2nd) 0.056 
25 54, 180 8 0.362,0.362 0.114 
15 56, 180 6 0.361, 0.362 0.114 
10 56, 180 12 0.362, 0-362 (5th) 0-071 
5 56, 180 12 No solution 

Squaric  acid 

I(o, 9,) ~(o,) 
Nrefs (°) (°) Q( Xo, Yo, Zo) Re 
100 90, 90 22 0.400, 0-250, 0.180 0.010 
50 90, 90 24 0.400, 0.250, 0.200 0.024 
25 90,90 114 0.300,0.250,0.400 0.017 

* No solution for eight-atom model, exocyclic atoms excluded. 

molecule as found is rotated by 60 ° from the 'correct' 
solution, but due to the molecular symmetry the sol- 
utions are almost equivalent. It should again be noted 
that when one is using such paltry data sets it is 
inadvisable to include detail in the model beyond the 
most basic molecular shape, in this case the six- 
membered ring portion. The Q functions calculated 
using the resulting model gave the correct shifts as 
the second-ranked combined map (combined height 
of 285 as opposed to 288 for the highest solution). 
As can be seen from these results the solution with 
ten reflections is somewhat less reliable but the fact 
that it can be found at all is a promising indicator of 
the power of Patterson methods working on very 
limited data sets. 
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Table 3. Reflection sets used, for equal IF hi estimate 
data 

3 - D e a z a u r a c i l  (all IF, I = 1.0) 

h k  1 h k  l h k  l h k  l h k  l 

1 1 3  1 1 2  0 2 2  3 2 0  1 1 1 " ] 2 0 -  
2 0 2  0 1 5  4 1 0  2 1 4  2 3  i l  reflection 
3 0 2  4 0 3  2 2 4  3 1 2  2 1  data 
1 2 2  2 1 3  0 1 4  1 0 5  3 0  set 
0 2 5  1 1 4  4 1 4  2 2 5  2 0 7  
5 2 0  1 2 1  2 2 6  4 3 6  2 1 0  
4 0 1  4 2 2  2 0 4  1 1 6  0 1 7  
3 2 7  0 2 1  1 3 1  7 0 2  3 2 2  
1 0 3  1 2 4  4 3 5  2 0 6  2 1 9  
0 3 3  2 0 5  6 0 7  3 3 7  0 0 1 4  

2 ' , 3 ' , 5 ' - T f i - O - a c e t y l g u a n o s i n e  (all I~l = 1.0) 

h k l  h k  l h k l  h k l  h k  l 
- 2 0 2  - 2 0 1  - 1 0 2  - 2 1 1  - 1 1 2  
- 1 0 1  - 3 0 3  2 0 1  - 4 0 4  0 2 0  

1 2 2  - 2 0 3  2 1 1  - 1 2 1  - 2 1 3  
1 2 1  - 3 0 1  2 3 1  - 1 1 3  1 1 1  

- 2 2 1  0 3 4  0 5 3  1 2 5  1 5 0  

Table 4. Summary of results, equal IF hi estimate data 

3-Deazau rac i l  

I(0,  9)  tr(O~) 
Nref s (o) (o) Q(Xo ,  Yo, Zo) R c  

50 48, 56 122 0' 185, 0"319, 0"227 0-048 
20 50, 54 118 0" 173, 0"313, 0"211 0-033 
10 No solution 

2',3 ',5 '-Tri- O - a c e t y l g u a n o s i n e  

x(o, ~) g(o,) 
Nref s (o) (o) Q ( X o  ' Z0 ) R c  

25 54, 180 l0 (2nd) 0-379, 0-383 (2nd) 0.156 
15 No solution 

4). The solution for ten reflections in this case is more 
obscure. 

(ii) 2',Y,5'-Tri-O-acetylguanosine. For the 25- 
reflection data set shown in Table 3, the solution is 
obtained but the correct orientation in the rotation 
function is the second-highest peak (Table 4). 

(ii) 2',3',5'-Tri-O-acetylguanosine. As can be seen 
from Table 2, the solution is indicated unambiguously 
in PATMET for data sets limited to 300, 50, 25 and 
15 reflections. In the ten-reflection case the orienta- 
tion is found easily but the correct shifts are indicated 
as fifth-highest peak in the Q map. This is still an 
impressive performance. For a five-reflection data set 
the orientation of the planar group is still found, but 
there are now insufficient data to calculate the transla- 
tion function. 

As a comparison, it was found impossible to obtain 
a convergence map in MITHRIL from the data set 
containing 50 reflections, due to the extreme paucity 
of phase relationships within this group. For a 300- 
reflection data set the direct-methods calculations 
were not found to reveal the structure. 

(iii) Squaric acid (neutron data). In PATMET, the 
solutions for data sets of as few as 25 reflections were 
found to be straightforward (Table 2). Below this (for 
15 and 10 reflections), there are problems with the 
I(0, q~) function, in which the correct solution is only 
indicated as the second-highest peak. These problems 
could be related to the fact that the Patterson-method 
calculations for neutron data are not yet optimized 
(Wilson, 1987). 

( d ) Data comprising a subset of reflections given equal 
IFhl values 

(i) 3-Deazauracil. For ten reflections listed in Table 
3, a subset of the full data set chosen to contain the 
strongest reflections, all IF hi values were estimated to 
be equal. Using this type of data, with essentially no 
attempt made to estimate ]F hi values beyond choosing 
'strong' reflections, PA TMET was found to solve the 
structure easily for both 50 and 20 reflections (Table 

Concluding remarks 

In general it has been found that Patterson-methods 
calculations are remarkably robust with regard to the 
quality of the ]F hi data 'provided.  The performance 
of PATMET in solving crystal structures from powder 
data, inaccurate data and sparse data has been illus- 
trated by the above examples. Owing to the nature 
of direct methods, these cannot be as competitive in 
this field of structure determination from very poor 
data. Direct-methods solution was found to be un- 
tenable in several of the illustrative cases where the 
Patterson-method solution was fairly routine. 

Just how useful these results are to the structure 
investigator is another matter. Undoubtedly it is 
always satisfying and valuable to "solve' a crystal 
structure, that is to obtain the atomic positions to a 
reasonable degree of accuracy. Unfortunately, for 
many of the data sets examined above, such approxi- 
mate determination of atomic coordinates will be the 
limit of the crystal-structure investigation. For small 
and /or  poor data sets, refinement of all but the basic 
structural framework will often be out of the  question. 
Certainly one is very unlikely to obtain accurate bond- 
ing or thermal parameters from such data. 

The fact remains, however, that the general disposi- 
tion of the molecule, or some important group within 
the molecule, can be discovered from even very poor 
data. The value of such information in conforma- 
tional studies, stacking analyses or hydrogen-bonding 
network studies, for example, can be great. The 
strength of Patterson methods to yield information 
in these circumstances is available to be exploited. 
By provision of sensible model information in this 
way even poor data can be manipulated to reveal 
useful structural parameters. 
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Abstract 

Closed-form expressions for three-beam dynamical 
transmission electron diffraction are compared. These 
are used as a guide to determine the best experimental 
conditions for the determination of structure-factor 
phases by convergent-beam electron diffraction in the 
general non-systematic case. The validity domains of 
Kambe's [J. Phys. Soc. Jpn (1957), 12, 1-13] 'strong 
coupling' approximation and Bethe's [Ann. Phys. 
(Leipzig) (1928), 87, 55-129] second approximation 
are compared, and these approximations reconciled. 
A comparison of many-beam calculations with 
experimental non-systematic CBED patterns is used 
to determine a three-phase invariant for CdS with an 
accuracy of +5 ° in the electron structure-factor phase. 
If it is assumed that two of the phases are known 
exactly, the error in the third (00~) X-ray structure- 
factor phase would be +0.75 ° . The accuracy of the 
method for determining phases, atomic position 
parameters and bonding charge distributions is 
discussed. 

0108-7673/89/120839-13503.00 

I. Introduction 

In the 60 years which have passed since the discovery 
of the diffraction of electrons by crystals there have 
been many attempts to extract crystal structure and 
bonding information from electron diffraction pat- 
terns [for a review, see Cowley (1981)]. Unlike X- 
rays, except for special cases, the much stronger inter- 
action of electrons with matter renders the intensity 
of the multiply scattered electron beams very sensitive 
to the phases of crystal structure factors. The two- 
beam dynamical theory, however, does not preserve 
structure-factor phase information. In his classic 
study of three-beam dynamical electron diffraction, 
K. Kambe showed that the dynamical intensity 
depends on the sum of the phases of the three struc- 
ture factors involved in the interaction, which is called 
the three-phase structure invariant (Kambe, 1957). 
Fourteen years later it was shown for the same non- 
systematic three-beam case that a degeneracy point 
exists at which the intensity is zero for centrosym- 
metric crystals (Gj0nnes & H0ier, 1971). The position 
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